Nitrogen stress affects the turnover and size of nitrogen pools supplying leaf growth in a grass.

نویسندگان

  • Christoph Andreas Lehmeier
  • Melanie Wild
  • Hans Schnyder
چکیده

The effect of nitrogen (N) stress on the pool system supplying currently assimilated and (re)mobilized N for leaf growth of a grass was explored by dynamic ¹⁵N labeling, assessment of total and labeled N import into leaf growth zones, and compartmental analysis of the label import data. Perennial ryegrass (Lolium perenne) plants, grown with low or high levels of N fertilization, were labeled with ¹⁵NO₃⁻/¹⁴NO₃⁻ from 2 h to more than 20 d. In both treatments, the tracer time course in N imported into the growth zones fitted a two-pool model (r² > 0.99). This consisted of a "substrate pool," which received N from current uptake and supplied the growth zone, and a recycling/mobilizing "store," which exchanged with the substrate pool. N deficiency halved the leaf elongation rate, decreased N import into the growth zone, lengthened the delay between tracer uptake and its arrival in the growth zone (2.2 h versus 0.9 h), slowed the turnover of the substrate pool (half-life of 3.2 h versus 0.6 h), and increased its size (12.4 μg versus 5.9 μg). The store contained the equivalent of approximately 10 times (low N) and approximately five times (high N) the total daily N import into the growth zone. Its turnover agreed with that of protein turnover. Remarkably, the relative contribution of mobilization to leaf growth was large and similar (approximately 45%) in both treatments. We conclude that turnover and size of the substrate pool are related to the sink strength of the growth zone, whereas the contribution of the store is influenced by partitioning between sinks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر منبع نیتروژن بر برخی صفات فیزیولوژیکی و بیوشیمیایی لوبیا در شرایط تنش کم‌آبی

Nitrogen has an important role for supplying carbon skeletons which needs for producing compatible solutes and stress tolerance enzymes. Water deficit affects nitrogen fixation in legums. So we studied the effect of various nitrogen sources on physiological, and biochemical features of bean under water stress. This experiment was conducted as factorial based on completely randomized design with...

متن کامل

The sources of carbon and nitrogen supplying leaf growth. Assessment of the role of stores with compartmental models.

Patterns of synthesis and breakdown of carbon (C) and nitrogen (N) stores are relatively well known. But the role of mobilized stores as substrates for growth remains less clear. In this article, a novel approach to estimate C and N import into leaf growth zones was coupled with steady-state labeling of photosynthesis ((13)CO(2)/(12)CO(2)) and N uptake ((15)NO(3)(-)/(14)NO(3)(-)) and compartmen...

متن کامل

Effects of Water Stress and Fusarium oxysporum f. sp. lycoperseci on Growth (leaf area, plant height, shoot dry matter) and Shoot Nitrogen Content of Tomatoes Under Greenhouse Conditions

Effects of water stress and Fusarium oxysporum f. sp. lycoperseci (Fol) on the growth of tomatoes were studied in a greenhouse experiment. Treatments consisted of five levels of water stress (1, 3, 5, 7 and 9 day irrigation intervals). Infested soil consisting of 400 chlamydospores g1 of Fol and non infested soil were used. Experiments arranged in a completely randomized design with 8 replicati...

متن کامل

Cotton reproductive and fiber quality responses to nitrogen nutrition

Nutrient (N) stress affects cotton growth, primary physiological processes andfiber properties. This study utilized two sunlit growth chambers to compare cotton(cv. TM-1) responses to two levels of N nutrition imposed at the onset of floweringstage of development, 100 and 0% of optimum N, in plants grown under otherwiseoptimal temperature and soil moisture conditions. Flowers and bolls were tag...

متن کامل

Nitrogen deficiency increases the residence time of respiratory carbon in the respiratory substrate supply system of perennial ryegrass.

Plant respiration draws on substrate pools of different functional/biochemical identity. Little is known about the effect of nitrogen deficiency on those pools' sizes, half-lives and relative contribution to respiration, and consequently, of carbon residence time in respiratory metabolism. Here we studied how nitrogen fertilization affects the respiratory carbon supply system of shoots and root...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 162 4  شماره 

صفحات  -

تاریخ انتشار 2013